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Resonant properties of short expansion chambers are studied comprehensively using
a traditional analytical approach with simply re"ned equations. Containing enough number
of radial modes in calculation, properties of chambers including the cases of extremely short
ones and/or asymmetric mode waves incidence are investigated, and con"rmed
experimentally with the well-designed apparatus. For various dimensions of chambers and
for any mode wave incidence, resonant properties are simply summarized using the resonant
frequency, which is almost decisively normalized by the chamber depth and the wavelength
of the plane wave for an extremely short one; and by the chamber diameter for a relatively
long one with the transition length from acoustically short (resonant-type) to long
(common-type): the length is also decided by the chamber diameter. As the case may be, the
extremely short chamber might be applicable as a compact resonator mu%er.
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1. INTRODUCTION

Acoustic performance of an expansion chamber in a duct as a sound attenuator is well
known. It is represented by the repeating dome-shaped transmission loss curve, in the case
that the plane wave theory can be applied. But when the axial length of the chamber
considerably shortens, this property changes remarkably and the chamber begins to act as
a resonator mu%er [1].

Assuming a circular expansion chamber concentric with a circular in"nite duct and no
duct extension in the chamber, this simple duct system is speci"ed by the duct diameter D,
the chamber diameter d and the chamber length l. When the ratio d/D and l/d are "xed,
linear acoustic "elds in the duct and the chamber can be described decisively with the
relative frequency, regardless of the actual size of the duct system. Recently, Selamet et al.
investigated the e!ect of the l/d ratio on the acoustic performance of concentric chambers
experimentally and theoretically [2]. Although they were concerned with the wide range of
the l/d ratio, they did not give a detailed description about resonant-type chambers of
l/d(0)41: this important value corresponds to the transition chamber length from
acoustically long to short [3]. In addition, they "xed the d/D ratio for one value as
d/D"3)15. Especially in the range of l/d(0)2, they and other researchers [4] gave no
description. Such a short chamber can be found in the report of Kuznetsov et al. [5], but
they gave only few notations.
0022-460X/02/010165#23 $35.00/0 ( 2002 Academic Press
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In these past several years, Selamet et al. have continuously and extensively published
many results investigated with many types of expansion chambers in this journal [6]. On
the other hand, in the 1990s, we independently have studied properties of concentric
expansion chambers; developed the experimental apparatus and the calculation method;
and mentioned the importance of decaying higher order modes excited at both
discontinuities of the chamber's inlet and outlet as the same interpretation as that of
Selamet et al. Di!erent from Selamet et al., however, we were especially interested in cases in
which the l/d ratio is further small. Even in extremely small l/d ratio cases, we clari"ed that
the property of the chamber could be calculated accurately using a traditional analytical
approach [7], if enough number of higher order modes was taken into consideration for
calculation.

For the practical noise reduction problem, e.g., exhaust noise of internal combustion
engines of which dominant acoustic power is involved in a low-frequency range [8]; a short
chamber is not generally used as a resonator mu%er. Therefore, such a short chamber might
have been out of interest for former and current researchers. But if an extremely short
chamber works as a resonator, it would be expected to work as a compact mu%er (which
can be put in an axially small space), which is applicable to machines or ducting systems
radiating monotonic and relatively high-frequency noise. Recently, such noise might create
more serious problems because the size of recent machinery tends to become smaller; their
driving speed tends to become higher; and some of the traditional low-frequency noise
problems have been well treated now.

For practical reasons, many theoretical studies for circular duct systems have been
limited to deal with only circularly symmetric modes. In some cases, however, asymmetric
modes would cause serious duct noise, e.g., noise radiated from a jet engine [9]. It is easy to
expand two-dimensional analytical equations to the cases of asymmetric modes incident to
the chamber. We have demonstrated the accuracy of this expansion of analysis with the
apparatus that can radiate asymmetric modes propagating in a duct.

Our research concerning some matters mentioned above had been already completed.
Some of these results [10}12] are reviewed in this paper in order to clarify our method of
calculation and experiment. The main results newly obtained in this paper are presented in
section 5 as the relation between resonant frequencies and dimensions of resonant-type
chambers with various l/d and d/D ratios, including the cases of asymmetric modes
incidence.

2. THEORETICAL CALCULATION METHOD

In this study, we consider an expansion chamber as shown in Figure 1. To treat it as
a distributed-parameter system, sound behavior at a discontinuity in a duct must be
described "rst. For this purpose, we follow Miles and Alfredson's calculation methods
[7, 13]. By adding some modi"cations to their descriptions, the sound pressure in
a hard-walled circular duct is written as
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with the cylindrical co-ordinate (r, h, z), where r, h and z indicates the radial, circumferential
and axial direction respectively.

Equation (1) is realized as the superposition of each (m, n) mode wave with angular
frequency u, where m and n are integers, which, respectively, refer to the circumfernetial and
radial order of each mode wave. For reference, some mode shapes are shown in Figure 2,



Figure 1. An expansion chamber.

Figure 2. Shapes of the (m, n) mode waves.
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Figure 3. A discontinuity in a duct.
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where each outer circle indicates the duct wall; the solid lines in each circle indicate the
nodes of each mode; and the radial distribution of the sound pressure of each mode is
indicated below each circle. Formerly, we had regarded (m, n) as (m, n#1) except the
symmetric (m"0) modes. Namely, we labelled (1, 1) instead of (1, 0), (2, 1) instead of (2, 0),
and so on. This labelling rule might be reasonable when one's attention was directed not to
the number of nodal circles but to the sound pressure distribution through the diameter
shown in Figure 2. In this paper, however, we follow the general notation rule of higher
order modes [14].

In equation (1), P
mn

is a complex number that indicates the amplitude and phase in the
z direction of the (m, n) mode wave. J

m
is the Bessel function of the "rst kind of order m. c is

the sound velocity in free space, u
mn

is the cut-o! angular frequency of the (m, n) mode wave.
It equals 2q

mn
c/D that is given by the boundary condition at the rigid wall of the duct with

diameter D, where q
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is the value of root for dJ
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/dq"0: in the range of q'0, the nth root

for m"0; and the (n#1)th root for m*1. v
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is the phase velocity in the z direction of the
(m, n) mode wave, and is given by cu(u2!u2

mn
)~1@2. If u(u
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and the corresponding (m, n) mode wave cannot propagate in the duct. Generally, the
wavenumber k

zmn
("u/v

mn
) in the z direction and k

rmn
("u

mn
/c) in the r direction are used

in equation (1), but we use v
mn

and u
mn

, because whichever parameters are used, there is no
di!erence in terms of simplicity in the following equations.

We consider a discontinuity in a duct as shown in Figure 3. The hard-walled duct with
in"nite length in the z direction is separated into two sections at the discontinuity as
sections 1 and 2, corresponding to the duct and the chamber, respectively, in the later part of
this chapter. In the process of arranging equations, we try to simplify the notation as much
as possible in order to write a brief program code of computational calculation. For this
reason, some rules are made as follows:

(1) The ratio of each section's diameter is de"ned as

R
d
"d/D, (2)

that always follows the condition d'D, i.e., R
d
'1.
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(2) Because both sections are concentric, the circumferential mode (m) of any incident
wave at the discontinuity does not change when it re#ects and transmits. In the following,
hence, the notation m is eliminated, because each m is mutually independent for the
calculation. For example, u

mn
is denoted as u

n
.

(3) The su$x*1+ is used for section 1, and *2+ for section 2. For example, the cut-o! angular
frequency in section 1 is denoted as u*1+

n
.

(4) For the numerical calculation, the upper limit of n must be decided. With reference
to Hudde's research [15], in order to give the same order contributions of radial modes in
each section, the upper value of n is determined as an arbitrary integer following the
conditions:

n
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1
+R

d
, for m"0;

(n
2
#1)/(n

1
#1)+R

d
, for m*1, (3)

where n
1

is for section 1, and n
2

is for section 2.
(5) The symbols n and u are used in order to indicate the radial mode number for

section 1, and s for section 2.

If the incident wave (p*in+ in Figure 3) propagates in section 1 toward section 2, the
discontinuity becomes an abrupt expansion. In this case, the re#ected wave (p*1+) in
section 1 and the transmitted wave (p*2+) in section 2 are radiated at the discontinuity, but
the wave propagating in the negative z direction in section 2 does not exist, because the duct
has in"nite length. The sound pressures, which should be considered in Figure 3, are the
following:
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The relation among them can be solved using the boundary conditions at the discontinuity:
(1), continuity of the sound pressure and the axial velocity over the region 0)r)D/2; and
(2), zero axial velocity in section 2 over the region D/2)r)d/2. A disregard of the sound
pressure over the region D/2)r)d/2 is not a serious matter in this research as con"rmed
experimentally in section 3.

In order to calculate the re#ection and transmission coe$cients at the discontinuity,
we denote the complex amplitude of the incident wave of order n at z"z

0
as
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where K
1
, K

2
, K
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and K
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are given as follows:
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In equations (11), (12), (14) and (15), K
2

and K
3

are distributed for the values of u*1+
n

and u*2+
s

. Miles and Alfredson, and other researchers who followed them [1, 2], did not
refer to this distribution, but this is necessary to prevent the denominator of the right-hand
side of equations (12) and (15) from becoming zero.From the viewpoint of numerical
calculation, an error occur when a denominator takes on a value close to 0. In our
calculation program, equations (11) and (14) are used, when u*1+

n
is close to u*2+

s
in an

arbitrary range.
By eliminating P*2+

s
using equations (7) and (8), simultaneous equations are conducted:
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where d
un

is Kronecker's d. By solving equation (18) with arbitrary values of P*in+
n

(n"0,
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1
), the re#ected wave's complex amplitudes P*1+

n
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) are obtained.

Then, by substituting these values of P*1+
n

for equation (8), the transmitted wave's complex
amplitudes P*2+

s
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2
) are obtained.

If the incident wave propagates in section 2 toward section 1 in Figure 3, the
discontinuity becomes an abrupt reduction. In this case, the re#ected wave in section 2
and the transmitted wave in section 1 are radiated at the discontinuity. Sound
pressures of each wave are denoted by equations (5) and (6), but equation (4) must be
replaced by
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and the complex amplitude of the incident wave of order s at z"z
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Figure 4. Outline of calculation of chamber's property.
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equations are conducted as
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In the procedure for calculating equations (22) and (23), the values of A
un
, K

1
, K

2
, K

3
and

K
4

have already been calculated in equations (9)}(17) and (19). In the calculation procedure
for an expansion chamber mentioned below, it is not necessary to re-calculate these values
in one program code.

On the basis of the above equations, we calculate sound properties of an expansion
chamber shown in Figure 1. Our method explained below with Figure 4 is similar to
Alfredson's one [13]. It is supposed that the incident wave from the left side of the duct has
one circumferential mode m and several radial modes n with the complex amplitudes P*in+

n
. It

is not necessary to consider the case of several m modes' simultaneous incidence, because
the chamber is concentric with the duct and m are independent of each other. Each value of
complex amplitudes of the re#ected and transmitted waves on each side of the chamber is
obtained as follows:

(1) On cross-section 1 in Figure 4, the values of the complex amplitude P*A+
n

and P*B+
s

are calculated for P*in+
n

using equations (18) and (8).
(2) Waves corresponding to P*B+

s
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are calculated for P*B+
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using equations (22) and (23).
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.
(4) Waves corresponding to the summation of P*B+
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.



Figure 5. Experimental apparatus.

Figure 6. Formation of an extremely short chamber.
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(5) Steps (3) and (4) are repeated as follows: for P*C+
s

obtained in step (4), P*E+
s

and P*F+
n

are
calculated by step (3); for this P*E+

s
and P*B+

s
obtained in step (1), P*C+

s
and P*D+

n
are calculated

by step (4).

(6) If the values of P*A+
n

#P*F+
n

and P*D+
n

are converged in the repetition of step (5), this
calculation procedure is stopped.

In the above process, it must be considered that each wave's sound pressure changes
depending on the chamber length l. For this reason, every calculated value of P*B+

s
, P*C+

s
and

P*E+
s

is multiplied by exp(!jul/v
s
), which corresponds to the phase change or attenuation of

the propagating or non-propagating s-order mode wave respectively.



Figure 7. Sound source.
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3. VERIFICATION OF CALCULATION BY EXPERIMENT

In order to verify the calculated results, the transmission coe$cients are measured with
the apparatus shown in Figure 5. The duct comprises two steel pipes with inner diameter
D"41)3 mm. Each of them has a #ange at one end. Between these two #anges, a steel ring
or a short pipe with arbitrary inner diameter d and axial length l is placed concentric with
the pipes, in order to form the chamber. To form the extremely short chamber, a stepped
ring is placed as shown in Figure 6.

Figure 7 shows the sound source. It consists of four small speakers, which are located
on the duct wall at intervals of 903 in the circumferential direction. Every speaker
radiates sinusoidal sound waves with the same frequency and same amplitude. Actually
speaking, four speakers' properties are di!erent from each other. Therefore, we use
variable resistance devices connected with them in series that can control each speaker's
amplitude separately. If all speaker are excited in phase, the plane wave is generated in
the pipe. If speakers 1 and 2 are excited in phase and 3 and 4 are out of phase with n radian,
the (1, 0) mode wave (see Figure 2) is generated, which has a node on diameter A indicated in
Figure 7. If speakers 1 and 3 are excited in phase and 2 and 4 are out of phase, the (2, 0)
mode wave is generated, which has nodes on diameters A and B. The accuracy of sound
"elds formed by this sound source was con"rmed by preliminary tests. In this paper,
however, experimental results with the (2, 0) mode wave incidence are omitted, because the
frequency range becomes higher and su$cient data could not be obtained for the present
pipe size.

A microphone 5)6 mm in diameter is used as shown in Figure 5, which is supported by
a thin rod "tted on the pipe wall. It is traversable to the radial direction of the pipe to
measure the radial distribution of sound pressure amplitude.

The procedure for measuring the transmission coe$cient is as follows: "rstly, the ring (or
short pipe), which has the same inner diameter as the pipe and same axial length as
the chamber concerned, is placed between two #anges in order to form a straight pipe, and



Figure 8. Transmission coe$cient at the long chamber with the plane wave incidence, D"41)3 mm,
d"72)0 mm: (a), l"50 mm (l/d"0)694); (b), l"100 mm (l/d"1)39): L, measured; **, calculated by our
method; } } } , calculated by the plane wave theory; * -*, (0, 1) cut-o! in the chamber.
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the amplitude of the sound is measured at an appropriate radial position; after that, the ring
(or short pipe) with interested inner diameter d and axial length l is placed, and
the amplitude of the sound is measured; the latter amplitude divided by the former
amplitude gives the absolute value of the transmission coe$cient (amplitude ratio)
at the chamber.

With this apparatus, many results were obtained experimentally for comparison with
calculated results. Some of them are demonstrated in the following. The temperature was
"xed at 253C in all the experiments. This temperature is applied to all calculations in this
paper.

Figure 8 shows the calculated and measured transmission coe$cient (versus frequency) at
the acoustically long chamber with the plane wave incidence. Conventionally, the
transmission coe$cient of a long chamber is calculated by

C1#
1

4 GA
d

DB
2
!A

D

dB
2

H
2

sin2 A
ul

c BD
~1@2

, (24)

which is derived by the plane wave theory. In Figure 8, it is clear that the results using the
plane wave theory become incorrect as the frequency becomes high, even in the frequency
range where the lowest radial mode (0, 1) is not propagating. Otherwise, our calculated
results excellently agree with the measured results, even in the frequency range above the



Figure 9. Transmission coe$cient at the long chamber with the (1, 0) mode wave incidence, D"41)3 mm,
d"72)0 mm: (a), l"50 mm (l/d"0)694); (b), l"100 mm (l/d"1)39): L, measured; **, calculated; *}*,
(1, 0) cut-o! in the duct; * - -*, (1, 1) cut-o! in the chamber.
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(0, 1) cut-o!. At the discontinuity of the chamber, not only propagating but also decaying
higher mode waves are generated, and cause the dependency of the sound property on the
frequency as some researchers had pointed out [2]. In other words, it can be said that our
calculation considers enough number of higher modes. Actually, in all cases in this paper,
the value of n

1
is "xed at 10 in equation (3).

Figure 9 shows the cases of the (1, 0) mode wave incident to the chamber that has the
same geometry as Figure 8. In these cases, the results are obtained in the frequency range
where the (1, 0) mode wave can propagate in the duct, i.e., above 4)92 kHz. The agreement
between the calculated and measured results is good in the frequency range below the
chamber's (1, 1) cut-o!. This is one of the evidence to show that our calculation can be
applicable to the case of asymmetric mode wave incidence. But in further high frequency
range, this agreement becomes somewhat wrong, because the (2, 0) mode wave accidentally
generated also becomes cut-on in the duct above 8)16 kHz, and might a!ect the measured
data.

Figure 10 shows the transmission coe$cient (versus frequency) at the chamber with the
transition length between acoustically long and short. Good agreement between calculated
and measured results is obtained in both cases: (a), the plane wave; and (b), the (1, 0) mode
wave incidence. Our calculation is considered to be correctly applicable to chambers with
such length. In these cases, the transmission property changes remarkably as the chamber
length changes. This remarkable change can be explained more in detail using our
calculation in section 5.



Figure 10. Transmission coe$cient at the chamber with transition length: circular marks, measured; curved
lines, calculated: (a), the plane wave incidence, d"72)0 mm; L,**, l"25)0 mm (l/d"0)347); U, }} } , 30)0 mm
(0)417); =, } - }, 35)0 mm (0)486): (b), the (1,0) mode wave incidence, d"66)6 mm; L, **, l"18)0 mm
(l/d"0)270); U, } } } , 22)0 mm (0.330); =, * -*, 26)0 mm (0)390).
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4. RESONANT PROPERTIES OF EXTREMELY SHORT CHAMBERS

In this section, we show the results with the extremely short chamber, which resembles
a slit on the duct wall as a narrow space between the inlet and outlet sidewall of the
chamber. Hence, we call it a &&slit'' in this section.

Figure 11 shows the measured and calculated transmission coe$cient of slits with
D"41)3 mm and l"1)0 mm (i.e. l/D"0)0242, and l/d becomes further small as indicated
in the caption of Figure 11). In the experimental results in this "gure, it can be found that
the slit also acts as a resonator mu%er. The frequency, where the measured transmission
coe$cient becomes minimum, which can be called the practical resonant frequency; can be
almost correctly predicted by our calculation. However, a remarkable di!erence appears
between the experiment and calculation on the minimum value of the transmission
coe$cient; i.e., each measured value does not reach zero. This is supposed to be caused
by insu$cient resonance in a narrow space of the slit. Sound attenuation in a narrow space
between two parallel walls is caused mainly by viscosity of air on the wall [16]. Regarding
a slit as a side branch of a duct, the sound wave from the duct is realized to propagate
from the inlet to the bottom of the branch, then be re#ected at the bottom and propagate



Figure 11. Transmission coe$cient at the slit-like chamber, D"41)3 mm, l"1)0 mm: (a), the plane wave
incidence; (b), the (1, 0) mode wave incidence: circular marks, measured; curved lines, calculated: L, **,
d"60)0 mm (l/d"0)0167); U, } } } , 64)0 mm (0)0156); =, } - }, 68)0 mm (0)0147); >, --------, 72)0 mm (0)0139);

, * - -*, 76)0 mm (0)0132); , - - - -, 80)0 mm (0)0125).
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from the bottom to the inlet. Such waves would be in#uenced greatly by viscosity on
the wall of the branch.

This consideration mentioned above could be con"rmed experimentally with some slits,
each of them has several short l. The results are shown in Figure 12, where the following can
be found: as l becomes longer, the minimum value of the transmission coe$cient
approaches 0; the agreement with experiment and calculation becomes better; and this
agreement becomes excellent with l"5mm. This tendency seems to show an evidence of
the in#uence of viscosity. We had presented a simple method to predict actual slit properties
regarding the in#uence of viscosity by modelling the slit as a single-degree-of-freedom
system including a damping term [17].

Our attempt in this paper is to show resonant properties of short chambers normalized
by various d/D and l/d ratios in section 5. As mentioned above, however, in some cases of
the slit, its performance cannot be predicted correctly by our calculation with no regard of
the in#uence of viscosity, which is di$cult to treat in our attempt. The reason for this is that
on considering the in#uence of air viscosity on a wall, particle velocity of air would decrease
exponentially for the distance from the wall surface along the normal direction. Sound
attenuation ratio in narrow space would greatly depend on the width of the space, which
correspond not to the l/d ratio but the absolute value of l in the slit case. Therefore, slit
properties cannot be normalized by l/d.

Nevertheless, in section 5, we will show short chambers' properties including the slit
cases, taking the situation as given below into consideration. If l/d@1 but d is su$ciently
large, l becomes large enough to be able to ignore the in#uence of viscosity, and the actual
property is expected to be predicted by our calculation. In addition, in the case that l is not



Figure 12. Transmission coe$cient at the slit, D"41)3 mm: (a), the plane wave incidence, d"72)0 mm; (b), the
(1, 0) mode wave incidence, d"60)0 mm: circular marks, measured; curved lines, calculated: L,**, l"0)5 mm
U, } } } , 1)0 mm =, } - }, 2)0 mm >, --------, 3)0 mm; , * - -*, 5)0 mm; , - - - -, 10)0 mm.
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large, the resonant frequency, which is the most important property of a resonator
mu%er, can be predicted almost accurately even in the case of extremely short l as shown in
Figures 11 and 12.

In this section, the traditional analytical approach, which is based on the summation of
sound waves (including decaying modes) in the z direction as a distributed-parameter
system, is applied to the slit as an extremely short acoustical element; e.g., the element length
becomes 1

100
of the sound wavelength for l"1 mm slit with 3)4 kHz plane wave incidence.

Such a drastic application might not have been taken up by former researchers. In practice,
a higher order mode wave is realized as the summation of the plane waves: each of them
propagates inclining to the radial or circumferential direction. Hence, our approach is
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appropriate to be applied to the slit under the condition that su$cient number of radial
modes is taken into account. When the in#uence of viscosity becomes negligible, our
approach seems to be applicable whatever l/D is.

5. COMPREHENSIVE DESCRIPTION OF RESONANT PROPERTIES

In this section, resonant properties of short expansion chambers are comprehensively
described using our calculation. In all cases in this section, the size of the chamber is
normalized by the ratio of D, d and l.

5.1. THE PLANE WAVE INCIDENCE CASE

In this section, resonant properties are considered with the plane wave incident to the
short chamber. For reference, some examples of calculated transmission coe$cient curves
in the frequency domain are shown in Figure 13: (a), a shallow case; (b), a moderate case;
and (c), a relatively deep case. The frequency is normalized by the chamber diameter as kd/2,
where k is the wavenumber of sound in free space. In these "gures, curves of l/d(0)2 are not
included in order to prevent each "gure from becoming complicated to display. In such
narrow cases of l/d(0)2, every curve becomes analogous with the one shown in
Figure 12(a); i.e., the transmission coe$cient drops only near the resonant frequency and
the sharpness of the curve becomes wider as l/d becomes larger. Generally speaking, the
e!ective frequency range for sound attenuation becomes wider, when l/d and d/D become
larger.

In these "gures, the frequency where the transmission coe$cient reaches zero can be
found as the resonant frequency. Although in some cases, e.g., the case of l/d"0)3 in (c),
more than one resonant frequency is obtained, our attention is directed to the lowest one as
a fundamental one. In the case of l/d'0)4 in (b) and (c), the minimum transmission
coe$cient obtained near the fundamental resonant frequency does not reach zero, and it
can be said that the resonant frequency disappears. The upper limit length of the
resonant-type chamber can be judged as the length where the resonant frequency just
disappears. If the length becomes still longer, the property of the chamber in the frequency
range below the chamber's (0, 1) cut-o! approaches a common expansion-chamber mu%er's
one as shown in Figure 8.

Many calculations same as in Figure 13 were executed repeatedly, changing the values of
d/D and l/d. As the collective result of them, in Figure 14, the relation between the resonant
frequency and the chamber length is shown. Both parameters are normalized by the
chamber diameter d, as k

R
d/2 and l/d, where k

R
is the wavenumber of sound in free space at

the fundamental resonant frequency as explained in Figure 13, and d/2 is the chamber
radius. In every curve with each d/D, the values with l/d'0)01 are plotted. In the cases of
d/D*1)5, each curve has the end at l/d+0)4 that corresponds to the upper limit length of
the resonant-type chamber as explained in the previous paragraph using Figure 13.

On surveying Figure 14 roughly, the upper limit length seems to be obtained close to
l/d"0)4, where the value of k

R
d/2 approaches 4 regardless of d/D. As mentioned in

section 1, it can be generally concluded that the chamber acts as a resonator when
l/d(0)41 in the plane wave incidence case. This value of 0)41 is obtained by two conditions
as follows [3]: k

R
d/2"3)83 that corresponds to the chamber's (0, 1) cut-o!; and l"0)5j

R
,

where j
R

is the wavelength of the plane wave at the resonant frequency. These conditions
can be said to be almost correct in Figure 14, and it can be roughly concluded that the



Figure 13. Calculated transmission coe$cient versus relative frequency, the plane wave incidence:
(a), d/D"1)3; (b), 1)6; (c), 2)0:**, l/d"0)2; } } } , 0)3;* -*, 0)39; --------, 0)4;* - -*, 0)41; - - - - , 0)45; } - } - } - ,
0)5: * -*, (0, 1) cut-o! in the chamber; * - -*, (0, 1) cut-o! in the duct.
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resonant property of the short chamber with upper limit length almost depends on only its
diameter regardless of the duct diameter.

If Figure 14 is observed carefully, however, each upper limit of l/d is slightly di!erent
depending on d/D. Especially, in the cases of shallow chambers with d/D"1)3 and 1)4, no
limits are found. In cases of l/d*1)5, as shown in Figures 13(b) and 13(c), a second resonant
frequency appears in the frequency range above the chamber's (0, 1) cut-o!, and the "rst and
second resonant frequency come close to each other as l/d becomes larger. As generally
known, n radian phase shift occurs at the resonant frequency on a simple vibration system
with no damping factor. It is supposed that the reason why the resonant frequency
disappears near l/d"0)4 is that the phase shift is cancelled as n#n"2n, when the "rst



Figure 14. Resonant frequency versus length of short chamber, normalized by chamber diameter, the plane
wave incidence:**, d/D"1)3; } } }, 1)4;* -*, 1)5; -----, 1)6;* - -*, 1)7; - - - - , 1)8; } - } - } , 1)9;**, 2)0;* -*,
(0,1) cut-o! in the chamber ("3)83).
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resonant frequency meets the second one. On the other hand, in Figure 13(a), every
"rst resonant frequency appears at the range above the chamber's (0, 1) cut-o!, and there
might be no chance that the second resonant frequency appears, which could cancel the
resonant phenomena. This might be the reason why there is no upper limit; in other words,
we could not "nd the decisive transition length between acoustically short and long, in the
shallow chamber case. Even in such shallow cases, when l/d becomes long enough, repeating
domes as in Figure 8 appear in the range below the chamber's (0, 1) cut-o!.

In addition, in Figure 14, the values of each k
R
d/2 at l/d+0)4 are found to be slightly

di!erent from each other depending on each d/D. The pressure distribution of the (0, 1)
mode in the radial direction with diameter d is uniquely decided by d as shown in Figure 2,
and the relation between the nodal circle of the (0, 1) mode and the duct outer circle (duct
wall) changes following the d/D ratio. Therefore, it must be reasonable that the values of
k
R
d/2 are not perfectly constant regardless of d/D.
In Figure 15, same values as in Figure 14 are plotted as normalized by the chamber depth

b, as k
R
b and l/b. When d/D is "xed, b/D is also decide uniquely as indicated in the caption of

Figure 15. In this "gure, it is found that the values of k
R
b become almost constant at nearly

1)3 as l/b approaches 0 regardless of d/D except in the case of d/D"1)3. This means that the
resonant frequency of an extremely short chamber depends on only its depth. Suppose
k
R
b"1)3, b becomes 1)3/k

R
"1)3j

R
/(2n)+0)21 j

R
, which means that the chamber depth is

a little shorter than the quarter of wavelength of the plane wave. This can be understood as
compared with a closed-tube-like side-branch silencer, of whose resonant frequency is
obtained when the quarter of wavelength corresponds to its length with an added open-end
correction.

In Figure 15, it is clear that k
R
b decreases considerably when l/b increases near zero. This

might be an evidence showing the dependency of the resonant frequency on the chamber



Figure 15. Resonant frequency versus length of short chamber, normalized by chamber depth, the plane wave
incidence:**, d/D"1)3 (b/D"0)15); } } }, 1)4 (0)2);* -*, 1)5 (0)25); -----, 1)6 (0)3);* - -*, 1)7 (0)35); - - - - , 1)8
(0)4); } - } - } , 1)9 (0)45); **, 2)0 (0)5): * -*, n/2.
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depth when l/b is small, in the interpretation that the decrease of the resonant
frequency belonging to the increase of l is realized as the increase of the corresponding
open-end correction. When l/b becomes wider to some extent, then the resonant
frequency begins to increase to approach the upper end value of k

R
d/2+4 as shown in

Figure 14.
In Figures 14 and 15, results are not shown in the case of d/D(1)3 (b/D(0)15). The

resonant frequency of such a shallow chamber becomes higher and exceeds the duct's (0, 1)
cut-o! frequency. In this frequency range, when even only the plane wave propagates to the
chamber, the (0, 1) mode wave can be radiated at the chamber and starts to propagate in the
duct together with the plane wave, and transmission properties become complex such that
they cannot be included easily in Figures 14 and 15. Even in the case of d/D"1)3, as
supposed with Figure 14, the resonant frequency is likely to exceed the duct's (0, 1) cut-o!
(where k

R
d/2"3)83]1)3+4)98, k

R
b"3)83]0)3+1)15), when l approaches zero. In this

case, assuming k
R
b"1)3 against Figure 15, k

R
D/2 becomes 1)3/0)3+4)33 that exceeds the

duct's (0, 1) cut-o! (kD/2"3)83). Judging from this, the case of d/D"1)3 seems to be
a critical case, and the value of k

R
b near l/b"0 might be di!erent from other d/D cases to

some extent in Figure 15.

5.2. ASYMMETRIC MODE WAVE INCIDENCE CASE

In this section, the same procedure as in section 5.1 is developed in order to indicate
properties of short chambers with asymmetric mode wave incidence.

For reference, some examples of transmission coe$cient curves in the frequency domain
are shown in Figure 16 with the (1, 0) mode wave incidence: (a), a shallow case; and (b),



Figure 16. Calculated transmission coe$cient versus relative frequency, the (1, 0) mode wave incidence:
(a), d/D"1)3; (b), 1)6; **, l/d"0)1; } } } , 0)2; * -*, 0)29; --------, 0)3; * - -*, 0)31; - - - - , 0)32; } - } - } - , 0)33;
* * , 0)4: * -*, (1, 0) cut-o! in the duct;* - -*, (1, 1) cut-o! in the chamber; - }* , (1, 1) cut-o! in the duct.

SHORT EXPANSION CHAMBER 183
a relatively deep case. Same as with Figure 13, the frequency is normalized using kd/2
parameter. Calculations are carried out in the frequency range between the duct's (1, 0) and
(1, 1) cut-o! because: below the (1, 0) cut-o!, the (1, 0) mode wave cannot propagate in the
duct and there is no meaning to consider; above the (1, 1) cut-o!, the (1, 1) mode wave starts
to propagate together with the (1, 0) mode wave and a transmission coe$cient cannot be
de"ned easily. In order to prevent "gures becoming complicated, curves of l/d(0)1 are not
shown, but in such cases, each curve drops only near the resonant frequency as shown in
Figure 12(b).

In both "gures in Figure 16, remarkable changes of transmission properties occur near
l/d"0)3, where the transmission curves changes are similar to the plane wave case in
Figure 13 as follows: with the increases of l/d, the second resonant frequency appears; two
resonant frequencies come close; then the resonance disappears, where it is considered that
the chamber has the upper limit length of resonant-type.

Using the same procedure as in Figures 14 and 15, normalized resonant frequencies are
shown in Figures 17 and 18 with the (1, 0) or the (2, 0) mode wave incidence respectively.
The range of d/D is limited within 1)3}1)6 for Figure 17, and 1)3}1)4 for Figure 18, in order
to exclude two cases as follows: if a shallow chamber (d/D(1)3) is considered, the resonant
frequency exceeds the duct's (1, 1) or (2, 1) cut-o!, and resonant properties become
complicated; if a deep chamber (d/D'1)6 for Figure 17, and 1)4 for Figure 18) is considered,
the resonant frequency tends to be less than the duct's (1, 0) or (2, 0) cut-o! and disappears,
as supposed in Figure 16(b).



Figure 17. Resonant frequency versus length of short chamber, the (1, 0) mode wave incidence: (a), normalized
by chamber diameter; (b), normalized by the chamber depth:**, d/D"1)3; }} } , 1)4;* -*, 1)5; ......, 1)6:* -*,
(1, 1) cut-o! in the chamber ("5)33); * - -*, n/2.
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With a rough survey of Figure 17(a), the upper limit length of a resonant-type chamber is
obtained at l/d+0)3, where each normalized resonant frequency k

R
d/2 with each d/D comes

near 5)33 that is the chamber's (1, 1) cut-o!. This can be considered following two
conditions, which belong to an extended interpretation from the plane wave case mentioned
in section 5.1: the chamber length l is the half of the incident (m, n) mode's wavelength; and
the (m, n#1) mode becomes cut-on in the chamber. Namely,

l"j
mn

/2"nv
mn

/u"nc/(u2!u2
mn

)1@2, (25)

u
mn`1

"2q
mn`1

c/d, (26)

where j
mn

is the wavelength in the z direction of the (m, n) mode wave. By substituting
u"u

mn`1
into equation (25), and eliminating c from two equations,

l/d"n/M2 (q2
mn`1

!q2
mn

)1@2N (27)



Figure 18. Resonant frequency versus length of short chamber, the (2, 0) mode wave incidence: (a), normalized
by chamber diameter; (b), normalized by the chamber depth:**, d/D"1)3; }} } , 1)4;* -*, (2, 1) cut-o! in the
chamber ("6)71); * - -*, n/2.
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is obtained. By substituting q
10
"1)84 and q

11
"5)33 into equation (27), l/d"0)314 is

obtained for the (1, 0) mode wave incidence. This l/d value moderately agrees with the upper
end of each curve in Figure 17(a).

On the other hand, in Figure 17(b), each curve with each d/D concentrates to k
R
b+1)4 as

l/b approaches 0. This is realized with the same interpretation as in section 5.1. Although the
values of k

R
b are slightly larger than the values of the plane wave incidence case in Figure

15, it is supposed that the extremely short chamber acts as a side-branch silencer and
depends on the wavelength of the plane wave with non-plane mode wave incidence.

The same consideration and interpretation mentioned above are applicable to Figure 18
for the (2, 0) mode wave incidence case. By substituting q

20
"3)05 and q

21
"6)71 into

equation (27), l/d"0)263 is obtained. Close to this l/d in Figure 18(a), the upper limit of
a resonant-type chamber is obtained, and k

R
d/2 approaches nearly 6)71 corresponding to

the chamber's (2, 1) cut-o!. On the other hand, in Figure 18(b), both curves with each d/D
approach k

R
b+1)5 as l/b approaches 0. Although the values of k

R
b are slightly larger than

the values of the (1, 0) mode wave incidence case in Figure 17(b), the condition in which the
depth of the chamber is slightly shorter than the quarter of wavelength of the plane wave at
the resonant frequency is maintained.
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6. CONCLUSIONS

In this paper, resonant properties of short expansion chambers are studied
comprehensively using the traditional analytical approach treating a duct system as
a distributed-parameter system. With the development of the analytical approach with
simply re"ned equations and containing enough number of radial modes in calculation, not
only the cases of moderately short chambers and the plane wave incidence but also the
cases that include extremely short chambers and/or asymmetric mode wave incidence are
investigated. The results are veri"ed experimentally with the apparatus that can radiate the
plane wave and asymmetric mode waves in a duct. In almost all the cases, the measured and
calculated transmission coe$cients coincide excellently. The applicability of our approach
to various cases of short chambers is con"rmed.

In a duct system with a simple concentric expansion chamber, with no regard of viscosity,
linear acoustic "elds are decisively described by the duct diameter, the chamber diameter
and the chamber length with the relative frequency. We denote the chamber's property
normalized by the ratio of the duct and chamber diameter, and the ratio of the chamber
length and diameter. Using these normalizations, as general results of this research, the
following is found:

(1) In almost all the cases, the transition length of an expansion chamber between
acoustically short (resonant-type) and long (represented by the repeating done-shaped
transmission loss curve) depends on two conditions as follows: the chamber length becomes
half of axial wavelength of the incident (m, n) mode; and the (m, n#1) mode becomes cut-on
in the chamber. These two conditions are con"rmed with various dimensions of chambers
and with asymmetric mode wave incidence. In other words, with the upper limit length
(transition length) of a resonant-type chamber, the resonant frequency of the chamber
almost depends on only the chamber diameter regardless of the duct diameter and with any
mode wave incidence.

(2) In the case of an extremely short chamber, which resembles a slit on the duct wall,
the resonant frequency is almost correctly normalized by the chamber depth and the
wavelength of the plane wave, regardless of other dimensions and with any mode wave
incidence. This property is realized in comparison with a side-branch silencer with an
open-end correction. For practical application, such a chamber might be expected to work
as a resonator mu%er, which can be applicable in a very narrow axial space.

(3) In all cases of resonant-type chambers with any mode wave incidence, as the chamber
length increases form extremely short to relatively long, the resonant frequency "rstly
decreases from the value mentioned in (2); then increases to approach the value mentioned
in (1).
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